
Highly
Adaptive

Lasso

Mark
van der Laan

Motivation

Overview

Implementation

Applications
of HAL
Super Learning

Propensity Score
Estimation in TMLE

Efficient Plug-in
Estimation

Nonparametric
Bootstrap

Concluding
Remarks

Acknowledgements: Rachael Phillips and Lars van der Laan

Highly Adaptive Lasso
In Causal Inference

Mark van der Laan

Professor of Biostatistics and Statistics
University of California, Berkeley

October 25, 2021, BASS-meeting



Highly
Adaptive

Lasso

Mark
van der Laan

Motivation

Overview

Implementation

Applications
of HAL
Super Learning

Propensity Score
Estimation in TMLE

Efficient Plug-in
Estimation

Nonparametric
Bootstrap

Concluding
Remarks

Traditional Lasso Estimator

• Advantages:
• L1-regularization performs both variable selection and

penalized regression
• Interpretable
• Cross-validated selection of L1-norm/penalty parameter

• Disadvantages:
• Reliance on parametric forms places strong assumptions on

the functional relationships between variables
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HAL Advantages

• First estimator that guarantees asymptotically efficient
estimation of any pathwise differentiable estimand1 (e.g.,
the average causal effect or treatment-specific survival),
without enforcing strong smoothness conditions.

• Assumptions are exceedingly mild, and expected to hold in
almost every practical application.

• Can be implemented with standard Lasso software.
• Converges to true function at rate n−1/3(log n)d/2.
• Accommodates a variety of function space specifications.

1An estimand that is a weakly differentiable functional of the density of
the data, the case for most causal inference estimands under positivity.
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Highly Adaptive Lasso (HAL)

A maximum likelihood estimator over all, or subset of,
cadlag functions with finite variation norm.

Key Ingredients
• Any stochastic relation/function we aim to learn from data

can be approximated by linear combination (i.e., sum) of
spline basis functions X → I(X > xj) for knot point xj .

• The variation norm (i.e., complexity) of a function is the
L1-norm.

• Optimize empirical performance over all such linear models
under fixed L1-norm that is selected with cross-validation.

van der Laan, Mark. "A generally efficient targeted minimum loss
based estimator based on the highly adaptive lasso." The International
Journal of Biostatistics (2017).
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Theoretically proven to approximate truth faster
than known machine learning algorithms
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Illustration in Low Dimensions



Highly
Adaptive

Lasso

Mark
van der Laan

Motivation

Overview

Implementation

Applications
of HAL
Super Learning

Propensity Score
Estimation in TMLE

Efficient Plug-in
Estimation

Nonparametric
Bootstrap

Concluding
Remarks

Tuning HAL

HAL’s computational cost is controlled by the number of basis
functions, which can be as large as n ∗ 2d−1.

Options for constraining the functional form of the target
function:

• Enforce a minimum proportion of 1’s in basis function.
• Enforce a maximal order of interaction.
• Specify particular additive model.
• Enforce monotonicity for some of the functions.
• Enforce higher order splines and thereby smoothness.
• Discretize continuous covariates: fewer knot-points.
• Greedy screening: iteratively, selected j-th order basis

functions generate j + 1-th order basis functions.
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Basic R hal9001 Functionality

1 Load package and data:
library(hal9001)
data(mtcars)

2 Create numeric vector for dependent variable:
Y <- mtcars[,"mpg"]

3 Create dataframe or matrix of predictors:
X <- mtcars[,c("cyl", "disp", "hp", "wt")]

4 Fit HAL:
hal_fit <- fit_hal(X=X, Y=Y)

Note: default max_degree=3 considers no more than 3-way
interactions, and default reduce_basis=0 places no restrictions
on the minimum proportion of 1’s in basis functions.
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Summary table of hal9001 HAL fit

summary(hal_fit)$table



Highly
Adaptive

Lasso

Mark
van der Laan

Motivation

Overview

Implementation

Applications
of HAL
Super Learning

Propensity Score
Estimation in TMLE

Efficient Plug-in
Estimation

Nonparametric
Bootstrap

Concluding
Remarks

Specifying hal9001 model formulas

Example: Observe O = (W1,W2,A,Y ) ∼ P0

R code: fit_hal(Y, X, formula, data, ...)

Additive model formula:
Y ∼ . or Y ∼ h(W1) + h(W2) + h(A)

Bi-additive model formula:
Y ∼ .ˆ2 or
Y ∼ h(W1)+h(W2)+h(A)+h(W1,W2)+h(W1,A)+h(W2,A)

Only interactions with A formula:
Y ∼ h(.) + h(.,A) or
Y ∼ h(W1)+h(W2)+h(A)+h(W1,A)+h(W2,A)

Monotone ↑ (i) ↓ (d) formula examples:
Y ∼ i(.) or Y ∼ i(.) + i(., .) or Y ∼ i(W1)+d(W2)+i(A)



Highly
Adaptive

Lasso

Mark
van der Laan

Motivation

Overview

Implementation

Applications
of HAL
Super Learning

Propensity Score
Estimation in TMLE

Efficient Plug-in
Estimation

Nonparametric
Bootstrap

Concluding
Remarks

Possible HAL fits under various smoothness orders

Example: Observe (W ,A,Y ) ∼ P0

R code: fit_hal(Y, X, data, formula, s, ...)

Example fits for 0-order smoothness, s=0:
Additive model:
Y = I(W > 0.5) + I(W > 0.3) + I(A > 0)
Bi-additive model:
Y = I(W > 0.5) + I(A > 0) + I(W > 0.5,A > 0)

Example fits for 1st-order smoothness, s=1:
Additive model:
Y = I(W > 0.5)[W − 0.5] + I(W > 0.3)[W − 0.3] + I(A >
0)[A − 0]
Bi-additive model:
Y = I(W > 0.5)[W − 0.5] + I(A > 0)[A − 0] + I(W >
0.5,A > 0)[W − 0.5][A − 0]
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Performance under Various Screening Options

• Binning: Reducing number of spline knot points,
separately for 1-way, 2-way, 3-way basis functions.

• Greedy screening: Build interactions sequentially from
screened basis functions of lower order interactions.

n = 2000; d = 12
Size of regression matrix (n × p) up to 3-way interactions:
Binning (100, 25, 5): p = 30, 000
No Binning: p = 600, 000

Sequential (up to 2-way): first p=20,000 then p=2,000,
R2=0.88, MSE=0.376
No Sequential (up to 2-way): p=150,000, R2=0.85, MSE=0.394

More basis functions does not imply better performance.
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Super Learner incorporating HAL

• By varying tuning parameters in HAL, one can include
many HAL estimators in the library.

• The super learner will perform as well as the oracle choice
among all these HAL estimators, and thereby achieves at
minimal rate of convergence n−1/3(log n)d/2.

• Can include other machine learning algorithms and
parametric models as well.
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Meta-learning with HAL

The super learner is defined by the the library of candidate
estimators, loss function, and meta-learning algorithm.

Procedure for the Meta-HAL Super Learner
1 Perform meta-learning with HAL under specified L1-norm.
2 Define a discrete super learner that includes as candidates

the L1-norm specific meta-HAL super learners, in order to
optimally select the L1-norm of the HAL meta-learner
(double cross-validation).

This implementation guarantees the final discrete-selected
meta-HAL will perform as well as the optimally tuned
meta-HAL super learner.
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Meta-HAL Super Learner

SuperLearner (HAL)

SuperLearner (Convex)

Best f(x)

Mean f(x)

Worst f(x)

1 2 3

Relative MSE
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e
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Outcome-regression weighted LASSO (OAL)

Shortreed & Artefaie (2017) proposed outcome-regression
weighted Lasso (OAL) for propensity score (PS) estimation:

• Fit unpenalized linear model for E(Y |A,W ):

(α̂, η̂) = arg min
α,η

ln(α; Y ,A,W ).

where η is the coefficient for A, and α is the coefficient for
W .

• Denote the coefficient for variable Wj in the outcome
regression with α̂j .

• Fit PS with Lasso using regularization term

λ
∑

j
||αj ||−γ ||βj || instead of usual

∑
j | βj |.



Highly
Adaptive

Lasso

Mark
van der Laan

Motivation

Overview

Implementation

Applications
of HAL
Super Learning

Propensity Score
Estimation in TMLE

Efficient Plug-in
Estimation

Nonparametric
Bootstrap

Concluding
Remarks

HAL-based OAL for PS Estimation

The theoretical property of OAL relies on the correct
parametric formula, which is often unknown in practice.

We extend OAL to outcome-regression weighted HAL (OHAL):
1 Compute the outcome regression using Lasso, with

dependent variable the outcome Y and features the basis
functions ϕs,i and the treatment indicator A.

2 Get the outcome regression coefficients αs,i of ϕs,i .
3 Compute the propensity score using a Lasso logistic

regression, with dependent variable A and features ϕs,i .
The L1-constraint for βs,i , the coefficient for ϕs,i , is
defined as the weighted L1-norm above.

4 Tune the L1-norm with C-TMLE.
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OHAL Performance based on Kang & Shafer
(2007) Simulation

• Pre-treatment covariates (Zi1, · · · ,Zi4) are generated from
uncorrelated standard normal distributions.

• Treatment indicator is then generated from a Bernoulli
distribution with:

P(Ai = 1|Zi) = expit(−Zi1 + 0.5Zi2 − 0.25Zi3 − 0.1Zi4)

• Potential outcomes are generated by:

Y (a)
i = 210 + 27.4Zi1 + 13.7Zi2 + 13.7Zi3 + 13.7Zi4 + ϵ

ϵ ∼ N(0, 1)

• Thus, the value of the estimand, the ATE, is 0.
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Simulation to Assess OHAL Performance
(Continued)

• Only transformed covariates W are observed:

Wi1 = exp(Zi1/2)
Wi2 = zi2/(1 + exp(Zi1) + 10
Wi3 = (Zi1Zi3/25 + 0.6)3

Wi4 = (Z2 + Z4 + 20)2.

• In our experiment, we also included an instrumental
variable Wi5, and the treatment mechanism was modified
to:

P(Ai = 1|Zi ,Wi) = expit(−Zi1 + 0.5Zi2 − 0.25Zi3 − 0.1Zi4
2 +Wi5)
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OHAL Simulation Results

We use main-term linear regression to create biased initial
estimator Q̄0

n for TMLE/C-TMLE.

TMLE-HAL CTMLE-HAL CTMLE-OHAL Oracle
N=500 7.06 6.34 2.94 3.64
N=1000 4.42 3.55 1.40 1.70
N=2000 2.94 1.85 0.83 0.87

Table: MSE for each estimator across 200 replications with different
sample size.
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HAL-TMLE is Asymptotically Efficient

• Due to the HAL-super learner converging to true nuisance
parameter at faster rate than n−1/4, the HAL-TMLE
(using HAL for all nuisance parameters) is efficient in
great generality (vdL, 15).

• The only necessary model assumptions are:
• The true nuisance parameters have finite sectional

variation norm
• The loss functions of the true nuisance parameters are

uniformly bounded, so that oracle inequality applies
• The strong positivity assumption holds
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Example: Asymptotic efficiency of HAL-TMLE for
treatment-specific mean / ATE

Consider the HAL-TMLE of EY1 = EE (Y | A = 1,W ) based
on (W ,A,Y ) ∼ P0 in a nonparametric statistical model.

It is asymptotically efficient if
1 δ < P0(A = 1 | W ) for some δ > 0
2 W → E0(Y | A = 1,W ) and W → P0(A = 1 | W ) are

cadlag
3 W → E0(Y | A = 1,W ) and W → P0(A = 1 | W ) have

finite sectional variation norm.
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Can we break HAL-TMLE?
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Undersmoothed HAL-MLE or Meta-HAL is efficient
uniformly over large class of target estimands

• HAL-MLE is efficient for pathwise differentiable target
estimands, if L1-norm is chosen large enough.

• Using HAL in the meta-learning step of the super learner
to determine the best functional combination of candidate
estimators: Meta-HAL SL.

• Meta HAL-SL is efficient for pathwise differentiable target
estimands if L1-norm in meta-HAL is chosen large enough.

• Due to being an MLE, it solves a large class of score
equations, in particular, efficient scores corresponding with
target estimands. As a consequence, it can be analyzed as
a plug-in TMLE, even though it is not targeted.
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Nonparametric Bootstrap of HAL-TMLE

• Fix M at the cross-validation selector Mn or another
selector (we propose a plateau selector!).

• Draw 10,000 samples of size n from empirical measure Pn.
For each bootstrap sample P#

n , recompute the
HAL-TMLE(M), say P#∗

n,M .
• The HAL on bootstrap sample can be restricted to only

include indicator basis functions that were selected by
HAL-MLE(M) on original data.

• Use sampling distribution of ψ#∗
n,M = Ψ(P#∗

n,M), conditional
on Pn, to construct 0.95-confidence interval.

• Increase M till plateau in confidence interval for optimal
coverage.
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Bootstrap works for HAL-TMLE

• Conditional on the data (Pn : n ≥ 1), the bootstrap
sampling distribution of ψ∗

n converges to optimal normal
limit distribution N(0, σ2

0).
• The approximation error of bootstrap is driven by

performance of nonparametric bootstrap for an empirical
process indexed by Donsker class (i.e., cadlag functions
with sectional variation norm bounded by M).

• This suggests robust finite sample behavior of the
nonparametric bootstrap.
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Case Study

Compare two confidence intervals for ATE EY1 − EY0:
1 Wald-type
2 HAL-TMLE bootstrap, using plateau selection of L1-norm

in HAL.
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Simulation

Setting:
• W ∼ N(0, 42,−10, 10) drawn i.i.d. from a truncated

normal distribution, bounded within [-10,10].
• A ∼ Bernoulli(p(W )) with probability p(W) as a function

of W bounded between [0.3, 0.7], given by
p(W ) = 0.3 + 0.1Wsin(0.1W ) + ε, ε ∼ N(0, 0.052)

• Y = 3sin(a1W ) + A + ε2 is a sinusoidal function of W,
where ε2 ∼ N(0, 1).

• a1 controls the frequency (and true sectional variation
norm) of the sinusoidal function.

The value of the parameter of interest, the ATE, is 1.
• The experiment is repeated 500 times, and interval

coverages are computed
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Simulation for n = 100
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Figure: Coverage (left) and interval width (right) as a function of the
a1 coefficient (i.e., sectional variation norm) of the true
data-generating distribution.
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Concluding Remarks

• HAL is the first general nonparametric MLE.
• It converges at fast rate.
• HAL-TMLE is guaranteed asymptotically efficient.
• It provides finite sample robust TMLE for causal inference.
• It represents a class of HAL estimators by restricting

function space, a priori, or data adaptively (screening).
• Its fit is a sparse representation, at most n − 1 coefficients.
• It allows for nonparametric bootstrap.
• It has many applications, such as meta-HAL super-learner

and outcome adaptive HAL-TMLE.
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Frequently Asked Questions

• Why are global smoothing assumptions better than local
smoothing assumptions?

• If I include HAL in my Super Learner library, then why
would I include anything else?

• How does screening HAL’s basis functions affect it’s rate
of convergence to the true function?

• How does HAL compare to BART?
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